Zum Inhalt springen
Seitenleiste umschalten
TALSIM Docs
Suche
Benutzerlinks
Deutsch
Meine Werkzeuge
ausgeklappt
eingeklappt
Benutzerkonto erstellen
Anmelden
Seiten für abgemeldete Benutzer
Weitere Informationen
Anmelden
Namensräume
Übersetzen
Deutsch
ausgeklappt
eingeklappt
Ansichten
Statistiken zu Sprachen
Statistiken zu Nachrichtengruppen
Exportieren
Weitere
ausgeklappt
eingeklappt
Navigation
Hauptseite
Inhaltsverzeichnis
Werkzeuge
Spezialseiten
Druckversion
In anderen Sprachen
Übersetzungen exportieren
Einstellungen
Gruppe
Abgabenfenster
Ablauf einer TaskSrv-Auswertung
Ablauf eines TaskMgr-Einsatzes
Abstraktion der Betriebsregeln
Anlegen eines Benutzers
Anmeldung und Startfenster
Anschließen der Datenbanken
Anwendung des SydroCmd-tools
Anwendungsbeispiel: Umsetzung eines Betriebsplans
Arbeiten mit dem SydroCmd tool
Arbeiten mit dem SydroTaskMgr
Arbeiten mit dem TaskSrv
Arbeitsschritte zur Modellerstellung
ASCII-Datensatz
Begriffsdefinitionen
Belastungsdefinition/ Modellinput
Berechnungsschema von Speichern
Berechnungsschema/ Implementierung der Betriebsregeln
Bereich Simulationen
Bereich Varianten
Beschreibung der Systemelemente
Betriebsplan
Betriebsregelkonzept
Betriebsregeltypen
Bewirtschaftungsmodell
BlueM.Opt
BlueM.Wave
Bodenartenfenster
Bodentypenfenster
Datenbankstruktur
Delft-FEWS
Einleitung
Einsatzmöglichkeiten von Talsim-NG
Einstellung der Regions- und Sprachoptionen
Einzeleinleiterfenster
Einzelfenster von Modellkomponenten
Einzugsgebiet
Einzugsgebietsfenster
Erstellen eines Customers
Fehlermeldungen
Fenster der Systemelemente
Fenster Hochwasserwellenstatistik
Fenster Kurzfristprognose
Fenster Simulation-Wizard
Fließgewässerberechnung
Flussgebietsmodell
Ganglinienfenster
GRID TO TIMESERIES
Hauptseite
Hochwassermerkmalsimulation
Inhaltsverzeichnis
Installation der Software
Kontextmenü der Systemelemente
Liste aller TaskSrv-Jobs
Menüleiste
Menüleiste Systemverwaltung
Modellkonzept
Niederschlag-Abfluss-Modell
Operationeller Einsatz von Talsim-NG
Schnittstellen: Import/Export
Server-API
Simulation
Softwarekomponenten
Speicher
Speicher mit Wasserkraftanlagen
Speicherfenster
Stoffparameterfenster
SydroCmd Befehle
SydroCmd-Verzeichnisstruktur und Dateien
Sydrodomain.ini
Symbolleisten
Systemabgrenzung
Systemelementsdaten
Systemlogik
Systemplan
Systemverkleinerung zur Rechenzeitverkürzung
Systemverwaltung
Talsim-NG Hauptfenster
TaskMgr-Verzeichnisstruktur und Dateien
TaskSrv-Verzeichnis: Exe
TaskSrv-Verzeichnis: Input
TaskSrv-Verzeichnis: Output
TaskSrv-Verzeichnis: Sources
TaskSrv-Verzeichnis: Task
TaskSrv-Verzeichnis: Templates
TaskSrv-Verzeichnisstruktur und Dateien
TOC
Transportstrecke
Transportstreckenfenster
Unterteilung in Systemelemente
Variationen
Verbraucher
Verzeichnisstruktur
Verzweigung
Video Tutorials
Wasserinfrastruktur
Wasserwirtschaftliches System / Systemlogik
Workflow states
Zeitreihenverwaltung
Zielpegel
Zusammenarbeit TaskSrv-SydroCmd
Sprache
aa - Afar
ab - Abkhazian
abs - Ambonese Malay
ace - Achinese
ady - Adyghe
ady-cyrl - Adyghe (Cyrillic script)
aeb - Tunisian Arabic
aeb-arab - Tunisian Arabic (Arabic script)
aeb-latn - Tunisian Arabic (Latin script)
af - Afrikaans
ak - Akan
aln - Gheg Albanian
alt - Southern Altai
am - Amharic
ami - Amis
an - Aragonese
ang - Old English
anp - Angika
ar - Arabic
arc - Aramaic
arn - Mapuche
arq - Algerian Arabic
ary - Moroccan Arabic
arz - Egyptian Arabic
as - Assamese
ase - American Sign Language
ast - Asturian
atj - Atikamekw
av - Avaric
avk - Kotava
awa - Awadhi
ay - Aymara
az - Azerbaijani
azb - South Azerbaijani
ba - Bashkir
ban - Balinese
ban-bali - ᬩᬲᬩᬮᬶ
bar - Bavarian
bbc - Batak Toba
bbc-latn - Batak Toba (Latin script)
bcc - Southern Balochi
bci - Baoulé
bcl - Central Bikol
be - Belarusian
be-tarask - Belarusian (Taraškievica orthography)
bg - Bulgarian
bgn - Western Balochi
bh - Bhojpuri
bho - Bhojpuri
bi - Bislama
bjn - Banjar
blk - Pa'O
bm - Bambara
bn - Bangla
bo - Tibetan
bpy - Bishnupriya
bqi - Bakhtiari
br - Breton
brh - Brahui
bs - Bosnian
btm - Batak Mandailing
bto - Iriga Bicolano
bug - Buginese
bxr - Russia Buriat
ca - Catalan
cbk-zam - Chavacano
cdo - Min Dong Chinese
ce - Chechen
ceb - Cebuano
ch - Chamorro
cho - Choctaw
chr - Cherokee
chy - Cheyenne
ckb - Central Kurdish
co - Corsican
cps - Capiznon
cr - Cree
crh - Crimean Tatar
crh-cyrl - Crimean Tatar (Cyrillic script)
crh-latn - Crimean Tatar (Latin script)
cs - Czech
csb - Kashubian
cu - Church Slavic
cv - Chuvash
cy - Welsh
da - Danish
dag - Dagbani
de - German
de-at - Austrian German
de-ch - Swiss High German
de-formal - German (formal address)
din - Dinka
diq - Zazaki
dsb - Lower Sorbian
dtp - Central Dusun
dty - Doteli
dv - Divehi
dz - Dzongkha
ee - Ewe
egl - Emilian
el - Greek
eml - Emiliano-Romagnolo
en - English
en-ca - Canadian English
en-gb - British English
eo - Esperanto
es - Spanish
es-419 - Latin American Spanish
es-formal - Spanish (formal address)
et - Estonian
eu - Basque
ext - Extremaduran
fa - Persian
ff - Fulah
fi - Finnish
fit - Tornedalen Finnish
fj - Fijian
fo - Faroese
fon - Fon
fr - French
frc - Cajun French
frp - Arpitan
frr - Northern Frisian
fur - Friulian
fy - Western Frisian
ga - Irish
gaa - Ga
gag - Gagauz
gan - Gan Chinese
gan-hans - Gan (Simplified)
gan-hant - Gan (Traditional)
gcr - Guianan Creole
gd - Scottish Gaelic
gl - Galician
gld - Nanai
glk - Gilaki
gn - Guarani
gom - Goan Konkani
gom-deva - Goan Konkani (Devanagari script)
gom-latn - Goan Konkani (Latin script)
gor - Gorontalo
got - Gothic
grc - Ancient Greek
gsw - Swiss German
gu - Gujarati
guc - Wayuu
gur - Frafra
guw - Gun
gv - Manx
ha - Hausa
hak - Hakka Chinese
haw - Hawaiian
he - Hebrew
hi - Hindi
hif - Fiji Hindi
hif-latn - Fiji Hindi (Latin script)
hil - Hiligaynon
ho - Hiri Motu
hr - Croatian
hrx - Hunsrik
hsb - Upper Sorbian
hsn - Xiang Chinese
ht - Haitian Creole
hu - Hungarian
hu-formal - Hungarian (formal address)
hy - Armenian
hyw - Western Armenian
hz - Herero
ia - Interlingua
id - Indonesian
ie - Interlingue
ig - Igbo
ii - Sichuan Yi
ik - Inupiaq
ike-cans - Eastern Canadian (Aboriginal syllabics)
ike-latn - Eastern Canadian (Latin script)
ilo - Iloko
inh - Ingush
io - Ido
is - Icelandic
it - Italian
iu - Inuktitut
ja - Japanese
jam - Jamaican Creole English
jbo - Lojban
jut - Jutish
jv - Javanese
ka - Georgian
kaa - Kara-Kalpak
kab - Kabyle
kbd - Kabardian
kbd-cyrl - Kabardian (Cyrillic script)
kbp - Kabiye
kcg - Tyap
kea - Kabuverdianu
kg - Kongo
khw - Khowar
ki - Kikuyu
kiu - Kirmanjki
kj - Kuanyama
kjp - Eastern Pwo
kk - Kazakh
kk-arab - Kazakh (Arabic script)
kk-cn - Kazakh (China)
kk-cyrl - Kazakh (Cyrillic script)
kk-kz - Kazakh (Kazakhstan)
kk-latn - Kazakh (Latin script)
kk-tr - Kazakh (Turkey)
kl - Kalaallisut
km - Khmer
kn - Kannada
ko - Korean
ko-kp - Korean (North Korea)
koi - Komi-Permyak
kr - Kanuri
krc - Karachay-Balkar
kri - Krio
krj - Kinaray-a
krl - Karelian
ks - Kashmiri
ks-arab - Kashmiri (Arabic script)
ks-deva - Kashmiri (Devanagari script)
ksh - Colognian
ksw - S'gaw Karen
ku - Kurdish
ku-arab - Kurdish (Arabic script)
ku-latn - Kurdish (Latin script)
kum - Kumyk
kv - Komi
kw - Cornish
ky - Kyrgyz
la - Latin
lad - Ladino
lb - Luxembourgish
lbe - Lak
lez - Lezghian
lfn - Lingua Franca Nova
lg - Ganda
li - Limburgish
lij - Ligurian
liv - Livonian
lki - Laki
lld - Ladin
lmo - Lombard
ln - Lingala
lo - Lao
loz - Lozi
lrc - Northern Luri
lt - Lithuanian
ltg - Latgalian
lus - Mizo
luz - Southern Luri
lv - Latvian
lzh - Literary Chinese
lzz - Laz
mad - Madurese
mai - Maithili
map-bms - Basa Banyumasan
mdf - Moksha
mg - Malagasy
mh - Marshallese
mhr - Eastern Mari
mi - Maori
min - Minangkabau
mk - Macedonian
ml - Malayalam
mn - Mongolian
mni - Manipuri
mnw - Mon
mo - Moldovan
mr - Marathi
mrh - Mara
mrj - Western Mari
ms - Malay
ms-arab - Malay (Jawi script)
mt - Maltese
mus - Muscogee
mwl - Mirandese
my - Burmese
myv - Erzya
mzn - Mazanderani
na - Nauru
nah - Nāhuatl
nan - Min Nan Chinese
nap - Neapolitan
nb - Norwegian Bokmål
nds - Low German
nds-nl - Low Saxon
ne - Nepali
new - Newari
ng - Ndonga
nia - Nias
niu - Niuean
nl - Dutch
nl-informal - Dutch (informal address)
nmz - Nawdm
nn - Norwegian Nynorsk
no - Norwegian
nod - Northern Thai
nov - Novial
nqo - N’Ko
nrm - Norman
nso - Northern Sotho
nv - Navajo
ny - Nyanja
nyn - Nyankole
nys - Nyungar
oc - Occitan
ojb - Northwestern Ojibwe
olo - Livvi-Karelian
om - Oromo
or - Odia
os - Ossetic
pa - Punjabi
pag - Pangasinan
pam - Pampanga
pap - Papiamento
pcd - Picard
pdc - Pennsylvania German
pdt - Plautdietsch
pfl - Palatine German
pi - Pali
pih - Norfuk / Pitkern
pl - Polish
pms - Piedmontese
pnb - Western Punjabi
pnt - Pontic
prg - Prussian
ps - Pashto
pt - Portuguese
pt-br - Brazilian Portuguese
pwn - Paiwan
qqq - Message documentation
qu - Quechua
qug - Chimborazo Highland Quichua
rgn - Romagnol
rif - Riffian
rm - Romansh
rmc - Carpathian Romani
rmy - Vlax Romani
rn - Rundi
ro - Romanian
roa-tara - Tarantino
rsk - Pannonian Rusyn
ru - Russian
rue - Rusyn
rup - Aromanian
ruq - Megleno-Romanian
ruq-cyrl - Megleno-Romanian (Cyrillic script)
ruq-latn - Megleno-Romanian (Latin script)
rw - Kinyarwanda
sa - Sanskrit
sah - Sakha
sat - Santali
sc - Sardinian
scn - Sicilian
sco - Scots
sd - Sindhi
sdc - Sassarese Sardinian
sdh - Southern Kurdish
se - Northern Sami
se-fi - davvisámegiella (Suoma bealde)
se-no - davvisámegiella (Norgga bealde)
se-se - davvisámegiella (Ruoŧa bealde)
sei - Seri
ses - Koyraboro Senni
sg - Sango
sgs - Samogitian
sh - Serbo-Croatian
shi - Tachelhit
shi-latn - Tachelhit (Latin script)
shi-tfng - Tachelhit (Tifinagh script)
shn - Shan
shy - Shawiya
shy-latn - Shawiya (Latin script)
si - Sinhala
simple - Simple English
sjd - Kildin Sami
sje - Pite Sami
sk - Slovak
skr - Saraiki
skr-arab - Saraiki (Arabic script)
sl - Slovenian
sli - Lower Silesian
sm - Samoan
sma - Southern Sami
smn - Inari Sami
sms - Skolt Sami
sn - Shona
so - Somali
sq - Albanian
sr - Serbian
sr-ec - Serbian (Cyrillic script)
sr-el - Serbian (Latin script)
srn - Sranan Tongo
ss - Swati
st - Southern Sotho
stq - Saterland Frisian
sty - Siberian Tatar
su - Sundanese
sv - Swedish
sw - Swahili
szl - Silesian
szy - Sakizaya
ta - Tamil
tay - Tayal
tcy - Tulu
te - Telugu
tet - Tetum
tg - Tajik
tg-cyrl - Tajik (Cyrillic script)
tg-latn - Tajik (Latin script)
th - Thai
ti - Tigrinya
tk - Turkmen
tl - Tagalog
tly - Talysh
tly-cyrl - толыши
tn - Tswana
to - Tongan
tpi - Tok Pisin
tr - Turkish
tru - Turoyo
trv - Taroko
ts - Tsonga
tt - Tatar
tt-cyrl - Tatar (Cyrillic script)
tt-latn - Tatar (Latin script)
tum - Tumbuka
tw - Twi
ty - Tahitian
tyv - Tuvinian
tzm - Central Atlas Tamazight
udm - Udmurt
ug - Uyghur
ug-arab - Uyghur (Arabic script)
ug-latn - Uyghur (Latin script)
uk - Ukrainian
ur - Urdu
uz - Uzbek
uz-cyrl - Uzbek (Cyrillic script)
uz-latn - Uzbek (Latin script)
ve - Venda
vec - Venetian
vep - Veps
vi - Vietnamese
vls - West Flemish
vmf - Main-Franconian
vmw - Makhuwa
vo - Volapük
vot - Votic
vro - Võro
wa - Walloon
war - Waray
wls - Wallisian
wo - Wolof
wuu - Wu Chinese
xal - Kalmyk
xh - Xhosa
xmf - Mingrelian
xsy - Saisiyat
yi - Yiddish
yo - Yoruba
yrl - Nheengatu
yue - Cantonese
za - Zhuang
zea - Zeelandic
zgh - Standard Moroccan Tamazight
zh - Chinese
zh-cn - Chinese (China)
zh-hans - Simplified Chinese
zh-hant - Traditional Chinese
zh-hk - Chinese (Hong Kong)
zh-mo - Chinese (Macau)
zh-my - Chinese (Malaysia)
zh-sg - Chinese (Singapore)
zh-tw - Chinese (Taiwan)
zu - Zulu
Format
Für die Offline-Übersetzung exportieren
Im systemeigenen Format exportieren
Im CSV-Format exportieren
Hole
<languages/> {{Navigation|vorher=|hoch=Beschreibung der Systemelemente|nachher=Einleitung}} [[Datei:Systemelement001.png|50px|none|Symbol Systemelement Einzugsgebiet]]Die Simulation natürlicher Einzugsgebiete verlangt die Bestimmung der Belastungsbildung, Abflussaufteilung und der Abflusskonzentration. Im Folgenden sind die zugrundeliegenden Berechnungsansätze aufgeführt. ==Belastungsbildung== Die Belastungsbildung beschreibt die Ermittlung des Gebietsniederschlags für das betrachtete Einzugsgebiet. Pro Einzugsgebiet wird nur ein Niederschlag benutzt. Liegen mehrere Niederschlagsstationen im Einzugsgebiet vor, so ist es zweckmäßig das Gebiet in mehrere Systemelemente 'Einzugsgebiet' zu unterteilen, bis jedem Element wieder nur ein Niederschlag zugeordnet werden kann. ==Abflussbildung befestigter/unbefestigter Flächen== Die Abflussbildung ermittelt aus dem gefallenen Niederschlag den Effektivniederschlag und daraus abgeleitet die Komponenten Oberflächenabfluss, Infiltration, Verdunstung und Interflow. Eine Schneeberechnung wird durchgeführt bei Temperaturen unter Null °C und erfolgt anhand des Snow-Compaction-Verfahrens. Bezüglich der Algorithmen des Verfahrens wird auf die einschlägige Literatur verwiesen. Der natürlich ablaufende Prozess vom Niederschlag zum Abfluss wird für die mathematische Simulation in einzelne Phasen untergliedert. In der Abflussbildungsphase wird die Aufteilung des Niederschlages (Systembelastung) in den direkt zum Abfluss gelangenden "wirksamen Niederschlag" und die abflussunwirksamen Verluste (Benetzungs-, Mulden-, Verdunstungs- und Versickerungsverlust) vorgenommen. Dementsprechend wird diese Phase auch mit Belastungsaufteilung bezeichnet. Die resultierende mathematische Gleichung für die momentane Belastungsaufteilung schreibt sich wie folgt: <math>N_W(t) =N(t) -VP(t) -I(t) - \frac{dO}{dt} - \frac{dS}{dt}</math> mit: {|style="margin-left: 40px;" |<math>N_W</math>: || abflusswirksamer Niederschlag |- |<math>N</math>: || Niederschlag |- |<math>VP</math>: || potentielle Verdunstung |- |<math>I</math>: || Infiltration in den Bodenraum |- |<math>O</math>: || Oberflächenwasservorrat |- |<math>S</math>: || Schneevorrat |- |} Nachfolgend werden die in der Gleichung verwendeten Terme und deren Berechnung im Einzelnen erläutert. ===Niederschlag N(t)=== Die Niederschlagsdaten müssen dem Simulationsmodell in Form von Regenreihen zur Verfügung gestellt werden. Hierbei ist es prinzipiell unerheblich, ob die Niederschlagsreihe ein Blockregen, ein Modellregen, ein gemessener natürlicher Regen, ein Regenspektrum oder eine langjährige Regenreihe ist. Je nach Zielsetzung der Simulationsrechnung ist die geeignete Belastung ausgewählt werden. Die Regenreihen stammen entweder aus der Zeitreihenverwaltung von Talsim-NG oder werden wie bei Anwendung einer Kurzfristprognose durch die Eingabe einer Regendauer, einer Niederschlagshöhe und der Wahl eines Modellregens direkt vor einer Simulation erzeugt. ===Verdunstung VP(t)=== Die Verdunstung wirkt sich in zweifacher Weise auf die Abflussbildung aus. Zum einen sind die Anfangsbedingungen im Einzugsgebiet (Benetzung und Muldenfüllung auf der Oberfläche sowie eingeschränkt auch die Bodenfeuchte bei durchlässigen Flächen) ein Resultat des vor dem betrachteten Niederschlagsereignis stattfindenden Verdunstungsgeschehens, zum anderen wird der zu berechnende abflusswirksame Niederschlag um den Betrag der momentanen Verdunstungsrate geschmälert. Die potentielle (energetisch mögliche) Verdunstung VP ist zeitlich und örtlich sehr unterschiedlich und einer genauen Berechnung nur schwer zugänglich. Es stehen verschiedene Optionen zur Eingabe/Berechnung der potentiellen Verdunstung zur Verfügung: * Vorgabe einer externen Zeitreihe mit Werten für die potentielle Verdunstung * Interne Berechnung der potentiellen Verdunstung: Die potentielle Verdunstung wird auf Basis von Temperatur und je nach Verfahren weiteren Parametern intern berechnet. Es stehen die folgenden Verfahren zur Verfügung: ** Penman: Erfordert die Angabe mittlerer Jahresgänge oder von Zeitreihen für Sonnenscheindauer, Windgeschwindigkeit und relative Luftfeuchte ** Haude: Erfordert die Angabe eines mittleren Jahresgangs oder einer Zeitreihe relative Luftfeuchte ** Turc: Erfordert die Angabe mittlerer Jahresgänge oder von Zeitreihen für Sonnenscheindauer und relative Luftfeuchte ** Blaney-Criddle: Vereinfachtes Verfahren, erfordert lediglich die Angabe des Breitengrads, woraus die Sonnenscheindauer abgeleitet wird. * Angabe einer fixen Verdungstungshöhe pro Jahr: Bei dieser Option wird die eingegebene Jahressumme mit der Ausgleichsfunktion nach Brandt (siehe unten) innerjährlich verteilt. ====Ausgleichsfunktionen==== Die folgenden Ausgleichsfunktionen nach Brandt werden verwendet, um eingegebene Jahressummen der Verdunstung über das Jahr zu verteilen bzw. um Tageswerte auf Stundenwerte umzurechnen. Aus ausgewerteten Messungen von 20 Stationen, deren Mittelwerte als Histogramm in dargestellt sind, wurde folgende Ausgleichsfunktion ermittelt /BRANDT, 1979/. <math>VP=(0.96+0.0033 \cdot i) \cdot \sin\frac{2\pi}{365}(i-148)+158</math> mit: {|style="margin-left: 40px;" |<math>i</math>: || laufender Tag des Abflussjahres |- |<math>i=1</math>: || 1. November |- |} Die jährliche potentielle Gesamtverdunstungshöhe beträgt 642 mm. Liegen keine gemessenen Verdunstungswerte vor, kann optional dieser normierte Jahresgang der potentiellen Verdunstung für die Berechnung der aktuellen Verdunstung herangezogen werden. Ist das gewählte Berechnungszeitintervall kleiner als ein Tag, wird mittels des dargestellten Tagesgangs letztendlich die potentielle Verdunstung für jedes Berechnungszeitintervall ermittelt. Ist das Berechnungsintervall ≥ 1 Tag entfällt die Berücksichtigung des Tagesganges. <gallery mode="packed" heights=300px"> Datei:Jahresgang_ETpot.png|Jahresgang der potentiellen Verdunstung nach /BRANDT, 1979/ Datei:Tagesgang_ETpot.png|Tagesgang der potentiellen Verdunstung als Vielfaches der mittleren Tagesverdunstung </gallery> ===Oberflächenwasservorrat (versiegelter Flächenanteil) O=== Bei den versiegelten Flächenanteilen kann neben dem Schneevorrat auch die Infiltration vernachlässigt werden, so dass sich die Bilanzgleichung wie folgt vereinfacht: <math>N_W(t)=N(t)-VP(t)-\frac{dO}{dt}</math> wobei die Oberflächenwasservorratsänderung <math>dO/dt</math> die Benetzung der Oberfläche sowie die Auffüllung und Entleerung (durch Verdunstung) der Mulden repräsentiert.[[Datei:Schema_Modellansatz_Benetzungs-_und_Muldenverlust.png|thumb|Schema der Modellansätze Benetzungs- und Muldenverlust]] Als Benetzungsverlust <math>BV</math> für versiegelte Flächen wird folgender Standardwert angesetzt. <math>BV = 0.5 \mbox{ mm}</math> Der Muldenverlust MV wird durch den Anwender vorgegeben. Der Standard- und gleichzeitig Maximalwert im Modell beträgt 4 mm Der Muldenverlust stellt den Mittelwert für eine geneigte Oberfläche dar. Da die Mulden jedoch nicht gleichmäßig verteilt sind und erfahrungsgemäß bereits ein Abfluss einsetzt, bevor überall die komplette Muldenauffüllung erreicht ist, wird unterstellt, dass jeweils * 1/3 der versiegelten Fläche einen verminderten Muldenverlust von 1/3·MV * 1/3 der versiegelten Fläche den mittleren Muldenverlust von 3/3·MV * 1/3 der versiegelten Fläche einen erhöhten Muldenverlust von 5/3·MV aufweist. Somit kommt es bereits zum Abfluss, wenn der um die Verdunstungsrate verminderte Niederschlag den Benetzungsverlust und 1/3 des Muldenverlustes übersteigt (bei trockener Vorgeschichte). Die o.g. Annahmen sind in der folgenden Abbildung schematisch skizziert. Der Abflussbeiwert der versiegelten Flächen (nach Abdeckung der Anfangsverluste) wird mit <math>\Psi = 1</math> angesetzt. Bei der Festlegung des versiegelten Flächenanteils in einem Teileinzugsgebiet ist zu beachten, dass nicht alle befestigten oder versiegelten Flächen tatsächlich in eine Kanalisation entwässern. Die kontinuierliche Bereitstellung der Benetzungs- und Muldenverluste erfolgt über die laufende Bilanzierung dieser Speicher und der Verdunstung. ===Oberflächenwasservorrat (unversiegelter Flächenanteil) O=== Der Oberflächenwasservorrat wird über die Bilanzierung eines Verlustspeichers in Abhängigkeit des gewählten Abflussbildungsansatzes berechnet. Einzelheiten dazu finden sich in den folgenden Abschnitten zur Berechnung der Infiltration bzw. abflusswirksamer Niederschlag. ===Infiltration bzw. abflusswirksamer Niederschlag I(t), N<sub>W</sub>(t)=== Bei den durchlässigen Flächen kann die Infiltration in den Boden nicht vernachlässigt werden, da diese das Abflussgeschehen entscheidend prägt. Für die Berechnung wurden drei Ansätze im Modell implementiert: # Konstanter Abflussbeiwert <math>\Psi</math> # Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS) # Bodenfeuchtesimulation ====Konstanter Abflussbeiwert Ψ==== Bei Angabe eines <math>\Psi</math>-Wertes kommt nach Abdeckung der Anfangsverluste (Benetzungs- und Muldenverlust) der übrige Anteil des Niederschlages im Verhältnis des Abflussbeiwertes <math>\Psi</math> zum Abfluss und zwar unabhängig von der Vorgeschichte und den Merkmalen des Niederschlages (Höhe, Intensität, Dauer). Auf diesen Ansatz sollte nach Möglichkeit verzichtet werden, da hier der Prozess der Abflussbildung nur grob vereinfachend beschrieben wird. ====Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS)==== Bei Angabe eines vom Bodentyp und der Bodennutzung abhängigen CN-Wertes (siehe /DVWK, 1991/) lässt sich ein vorgeschichtsabhängiger Anfangsverlust sowie eine vorgeschichtsabhängige Beziehung des Abflussbeiwertes von der bis zum betrachteten Zeitpunkt akkumulierten Niederschlagshöhe formulieren /Zaiss, 1987/; d.h. der Abflussbeiwert wächst mit zunehmendem Niederschlag im Verlauf des Ereignisses an. Die Quantifizierung der Vorgeschichte erfolgt über den 21-Tage-Vorregenindex <math>VN</math> <math>V_N=\sum_{j=1}^21 C(j)^j \cdot hN_j</math> mit: {|style="margin-left: 40px;" |<math>hN_j</math>: || Niederschlagshöhe des j-ten Vortags |- |<math>C(j)</math>: || Faktor, der den Einfluss des j-ten Vortags beschreibt |- |} Der Einfluss der Jahreszeit wird durch einen Jahresgang des Faktors C wiedergegeben. <math>C=0.05 \cdot \sin\frac{2\pi}{365}(i+0.75)+0.85</math> mit: {|style="margin-left: 40px;" |<math>i</math>: || laufender Tag des Abflussjahres |- |} Damit schwankt der Wert C zwischen 0.8 < C < 0.9. Hierdurch wird erreicht, dass bei gleichem Vorregen zu unterschiedlichen Jahreszeiten unterschiedliche Vorregenindizes berechnet und damit eine veränderte Abflussbereitschaft in Rechnung gestellt wird. In Abhängigkeit von der auf diese Weise quantifizierten Vorgeschichte kann unter Verwendung der gebietsspezifischen und für mittlere Vorfeuchteverhältnisse gültigen CN-Werte ein aktueller Abflussbeiwert berechnet werden. In der folgenden Abbildung ist für unterschiedliche CN-Werte dargestellt, wie sich der aktuelle Abflussbeiwert in Abhängigkeit von der Vorgeschichte verändert. Da sich im Verlaufe eines Regenereignisses durch die Durchfeuchtung des Bodens die Abflussbereitschaft eines Einzugsgebiets verändert, wird ebenfalls eine Anpassung des Abflussbeiwertes während eines Ereignisses als Funktion der kumulierten Niederschlagshöhe vorgenommen. <gallery mode="packed" heights=300px> Datei:Abhängigkeit_des_Abflussbeiwertes_von_der_Vorgeschichte.png|Abhängigkeit des Abflussbeiwertes von der Vorgeschichte Datei:Abhängigkeit_des_Abflussbeiwertes_von_der_kumulierten_Niederschlagssumme.png|Abhängigkeit des Abflussbeiwertes von der kumulierten Niederschlagssumme </gallery> ====Bodenfeuchtesimulation==== =====Landnutzung===== Bei der Anwendung der Bodenfeuchtesimulation ist die Angabe von Landnutzungen notwendig. Aus den Angaben zur Landnutzung wird die Durchwurzelungstiefe benötigt, um die Dicke der Durchwurzelungsschicht zu ermitteln. Weitere Parameter der Landnutzung, die zur Berechnung der Interzeption und der Transpiration dienen, sind: * Wurzeltiefe * Bedeckungsgrad * Jahresgang des Bedeckungsgrades * Blattflächenindex * Jahresgang des Blattflächenindexes Die Angabe von Haude-Faktoren zur besseren Berücksichtigung der Verdunstung je Landnutzung sind über Eingabe von Jahresgängen beliebig möglich und können den gewünschten Landnutzungen zugeordnet werden. =====Bodentyp/ Bodenart===== [[Datei:Programminterne_Zusammenfassung_Bodenschichten.png|thumb|Beispiel der Zusammenfassung der Bodenschichten zu einer programminternen Schicht anhand der Durchwurzelungsschicht]] [[Datei:Schema_Bodenfeuchtesimulation.png|thumb|Mit der Bodenfeuchtesimulation berechnete Größen]] Die Bodenfeuchtesimulation basiert auf einer nichtlinearen Berechnung der einzelnen Bodenhorizonte. Der Boden wird dabei in verschiedene Horizonte (Schichten) eingeteilt. Jede Schicht wird berechnet und mit den (falls vorhanden) darunter bzw. darüber liegenden Schichten abgeglichen. Als Parameter zur Bodenfeuchteberechnung dienen folgende bodenphysikalischen Größen: * Welkepunkt (WP) * Feldkapazität (FK) * Gesamtporenvolumen (GPV) * Gesättigte Leitfähigkeit (kf-Wert) * Maximale Infiltrationskapazität (Max.Inf.) * Maximale Rate des Kapillaraufstiegs (Max.Kap.) * Zuordnung zu einer Bodenart: Sand, Schluff, Ton Die mögliche Anzahl der Bodenschichten läuft von minimal einer bis maximal sechs. Die Erfahrung zeigte, dass die besten Ergebnisse mit einer Aufteilung in drei Schichten erzielt werden konnten. Aus diesem Grund werden die eingegebenen Schichten programmintern immer in drei Horizonte unterteilt. * Infiltrationsschicht (Standarddicke [cm] = 20) * Durchwurzelte Schicht (Mindestdicke [cm] = 5) * Transportschicht (Mindestdicke [cm] = 5) Die Berechnung der neuen Bodenkennwerte für die programmintern verwendeten Schichten erfolgt durch eine Gewichtung entsprechend den vorgegebenen original Dicken der Schichten. Im Fall der gesättigten Leitfähigkeit läuft die Berechnung nach dem Prinzip der Erhaltung der Kontinuität der Strömung ab. Bei senkrechter Strömung soll aufgrund der Kontinuität der Strömung die Geschwindigkeit v bei gegebener Durchflussmenge in einer programminternen Schicht denselben Wert besitzen. Damit ist das hydraulische Gefälle nicht mehr konstant. <math>kf_V=\frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{k_i}}</math> mit: {|style="margin-left: 40px;" |<math>d_i</math>: || anteilige Schichtdicke der jeweiligen Original-Schicht [mm] |- |<math>k_i</math>: || gesättigte Leitfähigkeit der jeweiligen Original-Schicht [mm/h] |- |<math>kf_V</math>: || gesättigte Leitfähigkeit der programmintern verwendeten Schicht [mm/h] |- |} [[Datei:Schema_aktuelle_Verdunstung.png|thumb|Schema der Ermittlung der aktuellen Verdunstung]] Auf der Basis der bereichsweisen linearen Abbildung der die Bodenfeuchte beeinflussenden Prozessfunktionen Infiltration, aktuelle Verdunstung (Evaporation + Transpiration), Perkolation, Interflow und Kapillaraufstieg wird für eine Bodenschicht die Wasserbilanzgleichung gelöst. Die Eingangsgröße für die Evaporation und Transpiration ermittelt sich aus der potentiellen Verdunstung. Die zu lösende Gleichung ist: <math>\frac{dBF(t)}{dt}=Inf(t)-Perk(t)-Eva_{akt}(t)-Trans_{akt}(t)-Int(t)+Kap(t)</math> mit: {|style="margin-left: 40px;" |<math>BF(t)</math>: || aktuelle Bodenfeuchte |- |<math>Inf(t)</math>: || Infiltration in den Boden |- |<math>Perk(t)</math>: || Perkolation (Durchsickerung) |- |<math>Eva_{akt}(t)</math>: || aktuelle Evaporation |- |<math>Trans_{akt}(t)</math>: || aktuelle Transpiration |- |<math>Int(t)</math>: || Interflow |- |<math>Kap(t)</math>: || Kapillaraufstieg |- |} [[Datei:Bodenprozessfunktionen.png|thumb|Darstellung ausgewählter Bodenprozessfunktionen]] Infiltration, Perkolation, Evaporation, Transpiration, Interflow und Kapillaraufstieg sind von der aktuellen Bodenfeuchte abhängig. In der Simulation wird diese Abhängigkeit durch folgende Funktionsverläufe beschrieben. <math>Inf(BF(t))=a_v \cdot \left(GPV-BF(t) \right)^{1.4}+k_f </math> (Ansatz nach HOLTAN) <math> Perk(BF(t)) = \begin{cases} 0, & BF(t)\le f_{PK} \cdot nFK + WP \\ k_f \cdot \left(\frac{BF(t)-(f_{PK} \cdot nFK +WP)}{GPV-(f_{PK} \cdot nFK +WP)} \right)^{exp,PK}, & BF(t)> f_{PK} \cdot nFK + WP \end{cases} </math> :::::::::::::::::(mod. Ansatz nach /OSTROWSKI, 1992/) <math> Eva(BF(t)) = \begin{cases} 0, & BF(t)\le WP \\ f_{Eva} \cdot \left(\frac{BF(t)-WP}{GPV-WP} \right)^{exp,PK}, & BF(t)> WP \end{cases} </math> <math> Trans(BF(t)) = \begin{cases} 0, & BF(t)\le f_{Trans} \cdot nFK + WP \\ f_{Trans} \cdot \left(\frac{BF(t)-(f_{Trans} \cdot nFK +WP)}{GPV-(f_{Trans} \cdot nFK +WP)} \right)^{exp,PK}, & BF(t)> f_{Trans} \cdot nFK + WP \end{cases} </math> mit: {|style="margin-left: 40px;" |<math>a_v</math>: || Infiltrationsfaktor nach HOLTAN (in Talsim-NG <math>a_v=1</math> |- |<math>k_f</math>: || Durchlässigkeitsbeiwert des gesättigten Bodens |- |<math>nFK</math>: || nutzbare Feldkapazität (<math>nFK=FK-WP</math>) |- |<math>WP</math>: || Welkepunkt |- |<math>FK</math>: || Feldkapazität |- |<math>GPV</math>: || gesamtes Porenvolumen |- |<math>f_{PK}</math>: || bodenabhängiger Skalierungfaktor der Perkolationsfunktion |- |<math>exp,PK</math>: || bodenabhängiger Krümmungsparameter der Perkolationsfunktion |- |<math>f_{Eva}</math>: || bodenabhängiger Skalierungsfaktor der Evaporationsfunktion |- |<math>f_{Trans}</math>: || bodenabhängiger Skalierungsfaktor der Transpirationsfunktion |- |<math>exp,Trans</math>: || Krümmungsparameter der Transpirationsfunktion |- |} Die Programmparameter werden intern berechnet. Der Anwender muss lediglich die Bodenkennwerte kf, WP, FK und GPV angeben. Die Berechnung der Bodenprozesse erfolgt mit einem neuentwickelten [[Special:MyLanguage/Berechnungsschema von Speichern|Baustein zur Simulation von Speichern]]. =====Elementarflächen===== Wird mit der Bodenfeuchtesimulation die Abflussbildung berechnet, wird gleichzeitig das Elementarflächenkonzept angewandt. Ein Einzugsgebietselement wird dabei in beliebig viele hydrologisch homogene Flächen unterteilt, d.h. Flächen gleichen Bodentyps und gleicher Landnutzung. Für jede Elementarfläche gilt genau eine Zuordnung von Landnutzung und Bodentyp. Die aus einer Elementarfläche resultierende Wassermenge wird am Elementausgang angesetzt, d.h. alle Elementarflächen geben unabhängig ihrer Lage im Einzugsgebiet Wasser mit der gleichen zeitlichen Verzögerung ab. <gallery mode="packed" heights=200px> Datei:Aufteilung_EZG_in_Elementarflächen.png|Aufteilung eines Einzugsgebietselementes in Elementarflächen Datei:Elementarflächen_Zuordnung_Bodentyp_Landnutzung.png|Zuordnung von Bodentyp und Landnutzung zu Elementarflächen </gallery> ==Abflusskonzentration== Die Abflusskonzentration bestimmt die Verzögerung des Oberflächenabflusses aus dem Einzugsgebiet. Es wird eine Parallelspeicherkaskade mit drei Speichern für unbefestigte und eine Kaskade für befestigte Flächen benutzt. Der Abfluss der Komponenten Interflow und Grundwasser wird über einen linearen Einzelspeicher verzögert an den Elementausgang abgegeben. [[Datei:Abflusskonzentration.png|frame|none|Berechnung der Abflusskonzentration von Einzugsgebieten]]