Einzugsgebietsfenster/en: Unterschied zwischen den Versionen

Aus TALSIM Docs
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 72: Zeile 72:
The catchment is divided into individual hydrologic response units (HRUs) using the [[Special:MyLanguage/Elementary Area Window|hydro response units HRU]] button. The sub-basin window provides the option to assign a uniform slope to all HRUs.
The catchment is divided into individual hydrologic response units (HRUs) using the [[Special:MyLanguage/Elementary Area Window|hydro response units HRU]] button. The sub-basin window provides the option to assign a uniform slope to all HRUs.


For interflow and base discharge the retention constants for the calculation of [[Special:MyLanguage/Einzugsgebiet#Abflusskonzentration|discharge concentration]] are defined.  
The retention coefficients for interflow and base flow, which are used for the calculation of the [[Special:MyLanguage/Einzugsgebiet#Abflusskonzentration|discharge concentration]], are defined.  


If the calculation of the deep interflow and/or the deep base discharge is also activated via checkboxes, the retention constants must also be entered for these two discharge components, as well as the desired division ratio for the base discharge into base discharge and deep base discharge.  
If the calculation of the deep interflow and/or the deep base discharge is also activated via checkboxes, the retention constants must also be entered for these two discharge components, as well as the desired division ratio for the base discharge into base discharge and deep base discharge.  

Version vom 15. Dezember 2020, 15:01 Uhr

Sprachen:

The properties window of the sub-basin can be opened by double-clicking on the element symbol in the flow network map Systemelement001.png or by right-clicking → Properties.

It has the three tabs Properties, Simulation and Outflow network. In the upper part of the window there are also three buttons for saving Datei:Button_speichern.PNG, applying values, as well as settings from other sub-basin elements in the same database (i.e. also from other variants and projects) Datei:Button_Werte_übernehmen.PNG, and closing the window. It is important to know that the sub-basin window also saves data automatically when closing.


Datei:Einzugsgebietsfenster_leer_EN.png


Properties

In the properties tab, general charactersitics and parameters for topography, surface runoff retention and measures in the sub-basin are entered. Furthermore, the calculation mode for determining the fraction of precipitation which contributes to the runoff is selected and the required parameters are entered.


Topography

Einzugsgebietsfenster Topographie EN.PNG

The data to be entered in the Topography section is typically determined in a GIS. The area of the sub-basin is crucial for the amount of generated runoff, since the precipitation is processed into the Precipitation-Runoff-Modell as precipitation height [mm] and, therefore, has to be scaled with the area.

The degree of imperviousness dictates the percentage of impervious area in the sub-basin and describes the proportion that runs off as urban surface runoff. The urban surface runoff is calculated separately from the remaining natural surface runoff and retained in a separate storage cascade. The discharge sequence assignment can also be used to assign this runoff to a different outflow element. The values for longest flowpath and maximum and minimum elevation are used to automatically calculate the surface runoff retention constants.


Retention - Surface Flow

Einzugsgebietsfenster Retention Oberflächenabfluss EN.PNG

The discharge concentration parameters of the surface flow are entered in the Retention - surface flow section. Using the calculate button, they can be automatically calculated from the input values in the topography section. Attention: if the box calculate automatically is checked, the parameters, that are calculated automatically, based on the current input in the topography section, are used for the simulation. If the retention constants of the surface runoff shall be changed and calibrated, the check mark must be removed first.


Measures in the Sub-Catchment

Einzugsgebietsfenster Maßnahmen im EZG EN.PNG

In the Measures in the sub-catchment section, the user can enter the depression losses. Using the Irrigation button an irrigation scheme can be defined and connected.


Calculation Mode

For the calculation of the infiltration and runoff-effective precipitation, Talsim-NG offers the following three calculation options. You can choose among them in the Calculation mode section.


1. Runoff Coefficient

Datei:Einzugsgebietsfenster Berechnungsweise Abflussbeiwert_EN.png

If the runoff coefficient method is selected, a constant runoff coefficient between 0 and 1 can be entered. This determines the amount of precipitation that flows as runoff after deducting losses.


SCS-CN Method

Datei:Einzugsgebietsfenster_Berechnungsweise_SCS_CN_Methode_EN.png

If the SCS-CN method has been selected as the calculation method, the CN-value and the 21-day rainfall index can be entered below the calculation mode section. In addition, the check box can be used to indicate whether a constant loss should be considered in the calculation.


Extended Method

Datei:Einzugsgebietsfenster_Berechnungsweise_SCS_CN_Methode_erweitert_EN.png

In the extended method, not only the direct surface runoff is determined, but also a soil moisture simulation is carried out for the infiltrated amount, and the components interflow and base flow are determined. For this purpose, the hydrological response units must be created using the corresponding button. The retention coefficients for interflow and base flow, which are used for the calculation of the discharge concentration, are also defined. Moreover, the initial soil moisture can be set (default setting: 100%). If the checkbox Use original soil layer is activated, the soil layers are used as provided by the user. By default, the soil layers are grouped into three internal calculation layers (infiltration layer, root layer, and transport layer).


Soil Moisture

Datei:Einzugsgebietsfenster_Berechnungsweise_Bodenfeuchte_EN.png

The soil moisture calculation option is the calculation option that requires the most parameters. The catchment is divided into individual hydrologic response units (HRUs) using the hydro response units HRU button. The sub-basin window provides the option to assign a uniform slope to all HRUs.

The retention coefficients for interflow and base flow, which are used for the calculation of the discharge concentration, are defined.

If the calculation of the deep interflow and/or the deep base discharge is also activated via checkboxes, the retention constants must also be entered for these two discharge components, as well as the desired division ratio for the base discharge into base discharge and deep base discharge. The initial soil moisture can also be entered (default setting: 100%).

If the checkbox Use original soil layers in the calculation area is activated, the soil layers will be used as entered by the user. By default, the soil layers are grouped into three internal calculation layers (infiltration layer, rooting layer and transport layer).


Simulation Settings

Einzugsgebietsfenster Simulationseinstellungen EN.PNG

The Simulation Settings tab is used to define the loads on the catchment area and to select the calculation type for the snow calculation.

The selection of the time series is done with the button Selection Datei:Button_Zeitreihe_zuordnen.png. The button Display Datei:Button_Zeitreihe_anzeigen.png opens a window with the time series graphics.

constant hydrograph can be connected via their respective selection menus and can be deleted with the DELETE-key. By clicking the button Show chart File:Button_Ganglinie_ anzeigen.png, the hydrograph window opens, where the chart can be edited directly. It is important to note that the hydrograph can also be connected at other places in the model and that the changes are valid everywhere. If you want to modify a chart only for the current catchment area, a copy has to be created and connected before.


Precipitation

Precipitation can be directly connected as a time series and can be scaled by a factor if necessary. If no long-term simulation but a short-term forecast with model rain is to be calculated, the settings are controlled directly via the short-term forecast.


Temperature

The temperature can be entered either as a time series or as an average temperature, if necessary scaled with an annual and/or daily variation.


Evaporation

For the evaporation there is the possibility to connect a time series, to define a yearly evaporation or to use the values from a previously created evaporation calculation.


Base discharge: mean value

A basic discharge can be specified as a mean donation and, if necessary, scaled with a yearly flow.

For soil moisture calculation, this value determines the start content (recalculated) for the basic runoff storage tank. From the l/s km² given here a volume is recalculated, which together with the retention constant of the base runoff gives this value for the base runoff at the beginning of the simulation.


Snow

Sequence assignment

Einzugsgebietsfenster Abflaufzuordnung EN.PNG

If the catchment element has more than one runoff element, the different runoff components can be sent to different runoff elements in the Runoff Assignment tab. By default, the entire drain goes to the first drain. Using drag&drop, the drain components shown on the left can be dragged to the drains on the right of the screen to make or break the connection. By clicking on the drain components, the respective connection to the drain is marked red. Clicking on the drains will mark the connections of all inflowing drain components.