Abstraktion der Betriebsregeln/en: Unterschied zwischen den Versionen
Ferrao (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „'''3. A release can be influenced by system states via scaling'''“) |
Ferrao (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „:<code>Q<sub>Release</sub> = f(System state)</code>“) |
||
Zeile 17: | Zeile 17: | ||
'''3. A release can be influenced by system states via scaling''' | '''3. A release can be influenced by system states via scaling''' | ||
:<code>Q<sub> | :<code>Q<sub>Release</sub> = f(System state)</code> | ||
:Über die reine Abhängigkeit vom Speicherinhalt hinaus kann eine Abgabe auch durch sonstige Systemzustände beeinflusst sein. Diese Einflüsse werden im weiteren Verlauf ''Systemzustandsfunktionen'' genannt. Die Systemzustände müssen nicht notwendigerweise am Speicher selbst auftreten. Die mathematische Beschreibung der Beeinflussung erfolgt durch Skalierung der ''Abgabenfunktion'' über einen Skalierungsfaktor. Dieser ergibt sich aus der Systemzustand/Skalierungsfaktor Beziehung. | :Über die reine Abhängigkeit vom Speicherinhalt hinaus kann eine Abgabe auch durch sonstige Systemzustände beeinflusst sein. Diese Einflüsse werden im weiteren Verlauf ''Systemzustandsfunktionen'' genannt. Die Systemzustände müssen nicht notwendigerweise am Speicher selbst auftreten. Die mathematische Beschreibung der Beeinflussung erfolgt durch Skalierung der ''Abgabenfunktion'' über einen Skalierungsfaktor. Dieser ergibt sich aus der Systemzustand/Skalierungsfaktor Beziehung. |
Version vom 28. Januar 2021, 13:44 Uhr
Most of the rules used in practice and some new rule possibilities can be found in the abovementioned 11 rule types. If these are examined for common features and abstracted, a mathematical formalism for the general description of operating rules can be derived from them, which essentially consists of the following six principles:
1. Releases can be described in terms of mathematical functions
Q = f(...)
2. A charge is defined as a function of the reservoir content
QRelease = f(current reservoir content)
- These functional relationships are called levy functions in the further course.
3. A release can be influenced by system states via scaling
QRelease = f(System state)
- Über die reine Abhängigkeit vom Speicherinhalt hinaus kann eine Abgabe auch durch sonstige Systemzustände beeinflusst sein. Diese Einflüsse werden im weiteren Verlauf Systemzustandsfunktionen genannt. Die Systemzustände müssen nicht notwendigerweise am Speicher selbst auftreten. Die mathematische Beschreibung der Beeinflussung erfolgt durch Skalierung der Abgabenfunktion über einen Skalierungsfaktor. Dieser ergibt sich aus der Systemzustand/Skalierungsfaktor Beziehung.
- Die Systemzustände können drei verschiedene Ausprägungen besitzen:
- 3a Zustandgröße als aktueller Wert
Skalierungsfaktor = f(aktueller Systemzustand)
- 3b Zustandgröße als Bilanz
Skalierungsfaktor = f(Bilanz eines Systemzustandes)
- 3c Zustandgröße als Prognose
Skalierungsfaktor = f(Bilanz einer Prognose über einen Systemzustand)
4. Systemzustände können zu Zustandsgruppen zusammengefasst werden
Skalierungsfaktor = f(Zustandsgruppe)
- Verschachtelte Abhängigkeiten zwischen einer Abgabe und mehreren Zustandsgrößen können durch die Überlagerung der Zustandsgrößen beschrieben werden. Dazu müssen die entsprechenden Zustandsgrößen gemäß einer bestimmten Vorschrift zu einer Zustandsgruppe zusammengefasst werden. Für eine Vorschrift eignen sich Summation, Multiplikation, Division, <, <=, > oder >= in Form von WENN/DANN Bedingungen.
- Sind sämtliche in der Zustandsgruppe enthaltenen Systemzustände erfasst und gemäß der Vorschrift ausgewertet, ergibt sich wiederum ein Skalierungsfaktor, mit dem die Abgabenfunktion beeinflusst wird (gemäß Abbildung 23).
5. Mehrere Abgaben eines Speichers können Abhängigkeiten untereinander aufweisen
QAbgabe = f(Qi)
mit i = 1...n (n = Anzahl der Abgaben aus dem Speicher)
- Sind mehrere Abgaben aus einem Speicher zu tätigen, so ist es oft der Fall, dass diese nicht unabhängig voneinander sind. Es können Abhängigkeiten zur gegenseitigen Beeinflussung bestehen. Zum einen kann dies bereits implizit durch die Position der Stützstellen einer Abgabenfunktion gegeben sein, z.B. wird Abgabe A bereits bei einem höheren Speicherinhalt reduziert als Abgabe B. Eine Abhängigkeit könnte aber auch über eine Reduzierung der Abgabe A zugunsten einer Abgabe B auftreten. In diese Kategorie fallen explizit definierte Wechselwirkungen wie sie bei Regel Nr. 10 aufgeführt sind. Die Definition solcher Wechselwirkungen entspricht der Festlegung von Prioritäten. Diese Formen der Abhängigkeiten werden im weiteren Verlauf Interne Abhängigkeiten genannt.
6. Alle vorgenannten Abhängigkeiten (Gesetzmäßigkeiten) können zeitlich variabel sein
QAbgabe = f(Zeit)
Alle vorgenannten Gesetzmäßigkeiten können u.U. nur für einen begrenzten Zeitraum Gültigkeit besitzen. Nach Durchlaufen des Zeitraumes werden sie von neuen funktionalen Beziehungen abgelöst. Ist dies der Fall, muss geklärt sein, ob und gegebenenfalls wie zwischen den Beziehungen zu interpolieren ist. Als Beispiel dafür ist jeder Lamellenplan zu nennen.