Transportstrecke/en: Unterschied zwischen den Versionen

Aus TALSIM Docs
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 88: Zeile 88:
==Cross-Section (Open Channel)==
==Cross-Section (Open Channel)==


Also here, the translation and retention behavior is mapped with help of the Kalinin-Miljukov waveform calculation. The characteristic length is derived from the normal runoff relationship according to Manning-Strickler as a parameter of the Kalinin-Miljukov method /Rosemann, 1970/.  
As with non-pressurized pipelines, the translation and retention behavior is simulated using flow routing according to Kalinin-Miljukov. The characteristic length required as a parameter for the Kalinin-Miljukov method is derived from the normal flow relationship according to Manning-Strickler /Rosemann, 1970/.  


[[Datei:Schema_charakteristische_Länge.png|400px]]
[[Datei:Schema_charakteristische_Länge.png|400px]]

Version vom 25. November 2020, 17:39 Uhr

Sprachen:
Systemelement003.png

Transport reaches simulate the translation and retention behavior of natural water courses or pipelines. There are different approaches for the calculation of pipes or natural channels.

The following options are implemented:

Calculation options for transport reaches


Translation

The inflow wave is output at the outlet with a time offset that corresponds to the flow time in the transport reach. If the flow time is smaller than the simulation time step, the translation behavior is not visible in the simulation results.


Non-Pressurized Pipeline

This option encompasses flow routing calculation for pipes according to Kalinin-Miljukov. The parameters required by the Kalinin-Miljukov method are estimated internally according to /Euler, 1983/ for circular pipes, and for non-circular profiles, are determined from the hydraulic diameter and the cross-sectional area when completely filled.

Characteristic length: [math]\displaystyle{ L=0.4 \cdot \frac{D}{I_S}~\mbox{[m]} }[/math]
Retention constant: [math]\displaystyle{ 0.64 \cdot L \cdot \frac{D^2}{Q_v} ~\mbox{[s]} }[/math]

with:

[math]\displaystyle{ D~\mbox{[m]} }[/math]: Circular pipe diameter or hydraulic diameter
[math]\displaystyle{ I_S~\mbox{[-]} }[/math]: Slope of the pipe
[math]\displaystyle{ Q_v ~\mbox{[m³/s]} }[/math]: Discharge capacity of the pipe when completely filled

The discharge capacity of the pipe when completely filled is calculated according to the flow law of Prandtl-Colebrook:

[math]\displaystyle{ Q_v=A_v \left [ -2 \cdot \lg \left [\frac{251 \cdot \nu}{D \sqrt{2 g D I_S}} + \frac{k_b}{3.71 \cdot D} \right ] \cdot \sqrt{2gDI_s} \right ] }[/math]

with:

[math]\displaystyle{ A_v~\mbox{[m²]} }[/math]: Cross-sectional area of the profile
[math]\displaystyle{ \nu~\mbox{[m²/s]} }[/math]: Kinematic viscosity
[math]\displaystyle{ k_b ~\mbox{[m³/s]} }[/math]: Operating roughness
[math]\displaystyle{ g ~\mbox{[m/s²]} }[/math]: Gravitational acceleration

According to the characteristic length [math]\displaystyle{ L }[/math] the transport distance of the collector [math]\displaystyle{ L_g }[/math] is divided into [math]\displaystyle{ n }[/math] calculation sections of equal length with

[math]\displaystyle{ n=L_g/L }[/math] (where [math]\displaystyle{ n }[/math] is an integer number)

Parameters are adjusted as follows for the individual calculation sections:

[math]\displaystyle{ L^*=L_g/n }[/math]
[math]\displaystyle{ K^*=K \cdot L^*/L }[/math]

Based on these parameters, after calculating the following recursion formula [math]\displaystyle{ n }[/math] times,

[math]\displaystyle{ Q_{a,i}=Q_{a,i-1}+C_1 \cdot \left(Q_{z,i-1} - Q_{a,i-1} \right ) + C_2 \cdot \left(Q_{z,i}-Q_{z,i-1} \right) }[/math]

with:

[math]\displaystyle{ Q_z }[/math]: Inflow to calculation section
[math]\displaystyle{ Q_a }[/math]: Outflow from calculation section
[math]\displaystyle{ i }[/math]: Current calculation time step
[math]\displaystyle{ i-1 }[/math]: Previous calculation time step
[math]\displaystyle{ dt }[/math]: Calculation time interval
[math]\displaystyle{ C_1=1- e^{-dt/K^*} }[/math]
[math]\displaystyle{ C_2=1- \frac{K^*}{dt}/C_1 }[/math]

produces the outflow at the end of the pipe. This approximation method derived from Kalinin-Miljukov is identical to the linear storage cascade used for calculating runoff concentration. This means the flow ina transport reach can be simulated using a linear storage cascade consisting of [math]\displaystyle{ n }[/math] storages with the retention constant [math]\displaystyle{ K^* }[/math].


Cross-Section (Open Channel)

As with non-pressurized pipelines, the translation and retention behavior is simulated using flow routing according to Kalinin-Miljukov. The characteristic length required as a parameter for the Kalinin-Miljukov method is derived from the normal flow relationship according to Manning-Strickler /Rosemann, 1970/.

Schema charakteristische Länge.png

With the characteristic length, the channel is divided into individual segments. For each segment, the calculation of flow routing is carried out using nonlinear reservoir calculation with the help of the normal flow relation.


Characteristic curve (water level - cross-sectional area - discharge)

If the transfer behavior of the transport distance is known from previous water level calculations, the result can be used in the form of a water level-cross section-discharge characteristic curve.