Translations:Einzugsgebiet/45/en: Unterschied zwischen den Versionen
Ferrao (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „with: {|style="margin-left: 40px;" |<math>d_i</math>: || proportional layer thickness of the respective original layer [mm] |- |<math>k_i</math>: || saturated…“) |
Keine Bearbeitungszusammenfassung |
||
(2 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 5: | Zeile 5: | ||
|<math>k_i</math>: || saturated conductivity of the respective original layer [mm/h] | |<math>k_i</math>: || saturated conductivity of the respective original layer [mm/h] | ||
|- | |- | ||
|<math>kf_V</math>: || saturated conductivity of the layer | |<math>kf_V</math>: || saturated conductivity of the simulation layer [mm/h] | ||
|- | |- | ||
|} | |} | ||
[[Datei: | [[Datei:Schema_aktuelle_Verdunstung_EN.png|thumb|Schematic of calculation of the actual evapotranspiration]] | ||
The water balance equation for a soil layer is solved on the basis of the piece-wise linear representation of the process functions which influence soil moisture: infiltration, current evaporation (evaporation + transpiration), percolation, interflow and capillary suction. The input variable for evaporation and transpiration is determined from the potential evaporation. | |||
The equation to be solved is: |
Aktuelle Version vom 25. November 2020, 13:50 Uhr
with:
[math]\displaystyle{ d_i }[/math]: | proportional layer thickness of the respective original layer [mm] |
[math]\displaystyle{ k_i }[/math]: | saturated conductivity of the respective original layer [mm/h] |
[math]\displaystyle{ kf_V }[/math]: | saturated conductivity of the simulation layer [mm/h] |
The water balance equation for a soil layer is solved on the basis of the piece-wise linear representation of the process functions which influence soil moisture: infiltration, current evaporation (evaporation + transpiration), percolation, interflow and capillary suction. The input variable for evaporation and transpiration is determined from the potential evaporation. The equation to be solved is: