Modellkonzept/en: Unterschied zwischen den Versionen

Aus TALSIM Docs
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:


{{Navigation|vorher=Temperaturmodell|hoch=Hauptseite#Theoretische Grundlagen|nachher=Beschreibung der Systemelemente}}
{{Navigation|vorher=Temperaturmodell|hoch=Hauptseite#Theoretische Grundlagen|nachher=Beschreibung der Systemelemente}}
In order to model a river basin, the [[Special:MyLanguage/Begriffsdefinitionen#Wasserwirtschaftliches System, Systembelastung, Systemelement|water management system]] must be converted into a mathematically usable representation.
In order to model a river basin, the [[Special:MyLanguage/Begriffsdefinitionen|water resources system]] must be converted into a mathematically usable representation.
The [[Special:MyLanguage/Begriffsdefinitionen#Simulationsmodell, Speicherbetriebsmodell|storage management simulation]] requires the mathematically usable representation of a water management system. Thereby reality has to be abstracted, divided into hydrological or hydraulic processes, and then be put into algorithms. The result of the abstraction are different [[Special:MyLanguage/Beschreibung der Systemelemente|system elements]]. The most important properties of a system element are listed below.
The [[Special:MyLanguage/Begriffsdefinitionen|simulation model]] requires a mathematically defined representation of a water resources system. For this, reality has to be abstracted, divided into hydrological or hydraulic processes, and then be put into algorithms. The result of the abstraction are different [[Special:MyLanguage/Beschreibung der Systemelemente|system elements]]. The most important properties of a system element are listed below.
[[Special:MyLanguage/Datei:Schema_Systemelement.png|thumb|300px|General abstract representation of a system element]].
[[Datei:Schema_Systemelement_EN.png|thumb|300px|General abstract representation of a system element]].


#Ein Systemelement integriert zusammengehörende Transport- und Speicherprozesse zu einer Berechnungseinheit.  
#A system element integrates related transport and storage processes to form one calculation unit.
#Ein Systemelement besitzt Eigenschaften in Form von Kenngrößen und Parameter.<br />Kenngrößen sind eindeutig bestimmbare Merkmale von Systemelementen. Parameter sind ebenfalls Merkmale von Systemelementen, die aber einer Kalibrierung und Verifikation unterliegen.  
#A system element has properties in the form of characteristics and parameters.<br/> Characteristics are clearly definable features of system elements. Parameters are also characteristics of system elements, but they are subject to calibration and verification.
#Systemelemente besitzen ihrem Typ nach entsprechende Methoden, die das Verhalten eines Elementes beschreiben. Belastungen, die auf das Element wirken, lösen, unter Benutzung der Methoden, Systemreaktionen und -zustände aus.  
#System elements have corresponding methods according to their type, which describe the behaviour of an element. Loads acting on the element trigger system reactions and states using these methods.
#Unter gleichen Belastungen sowie gleichen Kenngrößen und Parametern liefern die Methoden immer gleiche Systemreaktionen und -zustände.
#Under the same loads as well as the same characteristics and parameters, the methods always provide the same system reactions and states.




[[Special:MyLanguage/Datei:WaWi_System_real_vs_Systemlogig.png|thumb|500px|Vergleich reale wasserwirtschaftliche Struktur mit einer Systemlogik]]
[[Datei:WaWi_System_real_vs_Systemlogig.png|thumb|500px|Comparison between a real water resources system and a simulation model]]


Werden nun die [[Special:MyLanguage/Beschreibung der Systemelemente|Systemelemente]] so angeordnet, dass sie die in der Wirklichkeit bestehenden Fließbeziehungen reproduzieren, ist die reale wasserwirtschaftliche Struktur für eine mathematische Simulation aufbereitet. Dieser Vorgang, auch Strukturanalyse genannt, legt die geographischen Verhältnisse und Interaktionen fest. Ergebnis einer Strukturanalyse ist die Systemlogik. Die Interaktion zwischen mehreren Elementen findet über die Belastung und den Elementausgang statt, wobei die Belastung in den meisten Fällen einem Zufluss und der Ausgang einem Abfluss entspricht. Der Ausgang eines Elementes entspricht der Belastung des nächsten, unterhalb liegenden Elementes. Nahezu beliebige wasserwirtschaftliche Systemstrukturen lassen sich durch unterschiedliche Anordnungen der Elemente nachbilden.
If the [[Special:MyLanguage/Beschreibung der Systemelemente|system elements]] are now arranged in such a way that they reproduce the flow relationships existing in reality, the water resources system is then ready for a mathematical simulation. This process, also known as structural analysis, determines the geographical relationships and interactions. The result of a structural analysis is the flow network. The interaction between elements takes place via the load and the element outlet, where in most cases, the load corresponds to an inflow and the outlet to an outflow. The outlet of one element may for example correspond to the load (inflow) of the next element downstream. Almost any water resources system can be simulated by using different arrangements of the elements.


[[Special:MyLanguage/Beschreibung der Systemelemente|Systemelemente]] sind also die hydrologischen Bausteine des Flussgebietsmodells. Werden diese gemäß ihrer Fließbeziehungen miteinander verknüpft ergibt sich die Systemlogik und als visualle Darstellung davon der Systemplan.
[[Special:MyLanguage/Beschreibung der Systemelemente|System elements]] are the hydrological building blocks of the river basin model. Linking these together according to their flow relationships produces the flow network, and also the flow network map as a visual representation of it.


Je detaillierter die räumliche und zeitliche Diskretisierung betrieben wird, um so mehr Informationen lassen sich über das System selbst gewinnen. Eine möglichst hohe Auflösung eines Systems ist jedoch nicht immer uneingeschränkt von Vorteil, denn eine genauere Betrachtung verlangt mehr Kenngrößen und Parameter, die zum Teil kaum in ausreichender Qualität vorliegen und deshalb nur schwer abzuschätzen sind. So gibt es für jede Aufgabenstellung einen entsprechenden Abstraktionsgrad, der durch zunehmende Anforderungen und besser verfügbaren Eingangsdaten einem Wandel unterliegt.  
The more detailed you carry out the spatial and temporal discretization, the more information can be gained about the system itself. However, the highest possible resolution of a system does not always provide the best advantage, because a closer examination requires more characteristic values and parameters, some of which may not be available in sufficient quality and are therefore difficult to estimate. Thus, there is a suitable degree of abstraction for each task, which can however be subject to change due to increasing requirements and improved quality of available input data.
Die Sammlung der Kenngrößen und Parameter lässt sich unter dem Begriff Systemdatenanalyse vereinen. Die Erhebung der Regel- und Steuerbeziehungen und ihre Umsetzung für die Simulation ist Inhalt der Betriebsanalyse. Aus ihr erwächst eine Art zweite Systemlogik, die nicht Fließbeziehungen sondern die logischen Verknüpfungen der Zustandsgrößen zur Ableitung der Abgabenentscheidungen beinhaltet. Sie kann Steuerlogik genannt werden.
 
The collection of characteristics and parameters can be described using the term system data analysis. The collection of the control relationships and their implementation for the simulation is called the operational analysis. From the latter, a kind of second system logic arises, which does not contain flow relations but the logical connections of the state variables to derive the output decisions. It can be called control logic.

Aktuelle Version vom 25. November 2020, 16:34 Uhr

Sprachen:

In order to model a river basin, the water resources system must be converted into a mathematically usable representation. The simulation model requires a mathematically defined representation of a water resources system. For this, reality has to be abstracted, divided into hydrological or hydraulic processes, and then be put into algorithms. The result of the abstraction are different system elements. The most important properties of a system element are listed below.

General abstract representation of a system element

.

  1. A system element integrates related transport and storage processes to form one calculation unit.
  2. A system element has properties in the form of characteristics and parameters.
    Characteristics are clearly definable features of system elements. Parameters are also characteristics of system elements, but they are subject to calibration and verification.
  3. System elements have corresponding methods according to their type, which describe the behaviour of an element. Loads acting on the element trigger system reactions and states using these methods.
  4. Under the same loads as well as the same characteristics and parameters, the methods always provide the same system reactions and states.


Comparison between a real water resources system and a simulation model

If the system elements are now arranged in such a way that they reproduce the flow relationships existing in reality, the water resources system is then ready for a mathematical simulation. This process, also known as structural analysis, determines the geographical relationships and interactions. The result of a structural analysis is the flow network. The interaction between elements takes place via the load and the element outlet, where in most cases, the load corresponds to an inflow and the outlet to an outflow. The outlet of one element may for example correspond to the load (inflow) of the next element downstream. Almost any water resources system can be simulated by using different arrangements of the elements.

System elements are the hydrological building blocks of the river basin model. Linking these together according to their flow relationships produces the flow network, and also the flow network map as a visual representation of it.

The more detailed you carry out the spatial and temporal discretization, the more information can be gained about the system itself. However, the highest possible resolution of a system does not always provide the best advantage, because a closer examination requires more characteristic values and parameters, some of which may not be available in sufficient quality and are therefore difficult to estimate. Thus, there is a suitable degree of abstraction for each task, which can however be subject to change due to increasing requirements and improved quality of available input data.

The collection of characteristics and parameters can be described using the term system data analysis. The collection of the control relationships and their implementation for the simulation is called the operational analysis. From the latter, a kind of second system logic arises, which does not contain flow relations but the logical connections of the state variables to derive the output decisions. It can be called control logic.