Transportstrecke/de: Unterschied zwischen den Versionen
(Übernehme Bearbeitung einer neuen Version der Quellseite) |
(Übernehme Bearbeitung einer neuen Version der Quellseite) |
||
Zeile 3: | Zeile 3: | ||
{{Navigation|vorher=Einleitung|hoch=Beschreibung der Systemelemente|nachher=Verbraucher}} | {{Navigation|vorher=Einleitung|hoch=Beschreibung der Systemelemente|nachher=Verbraucher}} | ||
__TOC__ | __TOC__ | ||
[[ | [[Datei:Systemelement003.png|50px|none|Symbol Systemelement Einleitung]] | ||
Transportstrecken bilden das Translations- und Retentionsverhalten natürlicher Gewässerläufe oder Rohrleitungen ab. Dabei unterscheiden sich die Ansätze zur Berechnung von Rohren oder natürlichen Gerinnen. | Transportstrecken bilden das Translations- und Retentionsverhalten natürlicher Gewässerläufe oder Rohrleitungen ab. Dabei unterscheiden sich die Ansätze zur Berechnung von Rohren oder natürlichen Gerinnen. | ||
Folgende Optionen sind implementiert: | Folgende Optionen sind implementiert: | ||
[[ | [[Datei:Berechnungsoptionen_Transportstrecke.png|frame|none|Berechnungsoptionen von Transportstrecken]] | ||
Zeile 90: | Zeile 90: | ||
Auch hier wird mit Hilfe der Wellenablaufberechnung nach Kalinin-Miljukov das Translations- und Retentionsverhalten abgebildet. Aus der Normalabflussbeziehung nach Manning-Strickler wird die charakteristische Länge als Parameter des Kalinin-Miljukov-Verfahrens abgeleitet /Rosemann, 1970/. | Auch hier wird mit Hilfe der Wellenablaufberechnung nach Kalinin-Miljukov das Translations- und Retentionsverhalten abgebildet. Aus der Normalabflussbeziehung nach Manning-Strickler wird die charakteristische Länge als Parameter des Kalinin-Miljukov-Verfahrens abgeleitet /Rosemann, 1970/. | ||
[[ | [[Datei:Schema_charakteristische_Länge.png|400px]] | ||
Mit der charakteristischen Länge erfolgt für das Gerinne eine Aufteilung in einzelne Segmente. Für jedes Segment wird mit Hilfe der Normalabflussbeziehung über eine [[Special:MyLanguage/Berechnungsschema von Speichern|nichtlineare Speicherberechnung]] die Berechnung des Übertragungsverhaltens vollzogen. | Mit der charakteristischen Länge erfolgt für das Gerinne eine Aufteilung in einzelne Segmente. Für jedes Segment wird mit Hilfe der Normalabflussbeziehung über eine [[Special:MyLanguage/Berechnungsschema von Speichern|nichtlineare Speicherberechnung]] die Berechnung des Übertragungsverhaltens vollzogen. |
Aktuelle Version vom 19. November 2020, 11:57 Uhr
Transportstrecken bilden das Translations- und Retentionsverhalten natürlicher Gewässerläufe oder Rohrleitungen ab. Dabei unterscheiden sich die Ansätze zur Berechnung von Rohren oder natürlichen Gerinnen.
Folgende Optionen sind implementiert:
Translation
Die Zulaufwelle wird mit einem zeitlichen Versatz, welcher der Fließzeit in der Transportstrecke entspricht, an den Auslauf verschoben. Ist die Fließzeit kleiner als der Berechnungszeitschritt, wird in den Simulationsergebnissen das Translationsverhalten nicht sichtbar.
Freispiegel-Rohrleitung
Es erfolgt eine Wellenablaufberechnung für Rohre nach Kalinin-Miljukov. Die Parameter des Kalinin-Miljukov-Verfahrens werden programmintern nach /Euler, 1983/ für Kreisrohre abgeschätzt, bzw. für nicht kreisförmige Profile unter Angabe des hydraulischen Durchmessers und der Querschnittsfläche bei Vollfüllung bestimmt.
charakteristische Länge: | [math]\displaystyle{ L=0.4 \cdot \frac{D}{I_S}~\mbox{[m]} }[/math] |
Retentionskonstante: | [math]\displaystyle{ 0.64 \cdot L \cdot \frac{D^2}{Q_v} ~\mbox{[s]} }[/math] |
mit:
[math]\displaystyle{ D~\mbox{[m]} }[/math]: | Kreisrohrdurchmesser bzw. hydraulischer Durchmesser |
[math]\displaystyle{ I_S~\mbox{[-]} }[/math]: | Sohlgefälle des Rohres |
[math]\displaystyle{ Q_v ~\mbox{[m³/s]} }[/math]: | scheitelvolle Abflussleistung des Rohres |
Die scheitelvolle Abflussleistung des Rohres wird nach dem Fließgesetz von Prandtl-Colebrook berechnet:
[math]\displaystyle{ Q_v=A_v \left [ -2 \cdot \lg \left [\frac{251 \cdot \nu}{D \sqrt{2 g D I_S}} + \frac{k_b}{3.71 \cdot D} \right ] \cdot \sqrt{2gDI_s} \right ] }[/math]
mit:
[math]\displaystyle{ A_v~\mbox{[m²]} }[/math]: | Querschnittsfläche des Profils |
[math]\displaystyle{ \nu~\mbox{[m²/s]} }[/math]: | kinematische Viskosität |
[math]\displaystyle{ k_b ~\mbox{[m³/s]} }[/math]: | Betriebsrauheit |
[math]\displaystyle{ g ~\mbox{[m/s²]} }[/math]: | Erdbeschleunigung |
Entsprechend der charakteristischen Länge [math]\displaystyle{ L }[/math] wird die Transportstrecke des Sammlers [math]\displaystyle{ L_g }[/math] in [math]\displaystyle{ n }[/math] gleichlange Berechnungsabschnitte unterteilt mit:
- [math]\displaystyle{ n=L_g/L }[/math] (wobei [math]\displaystyle{ n }[/math] eine ganze Zahl ist)
Für die einzelnen Berechnungsabschnitte gelten die angepassten Parameter
- [math]\displaystyle{ L^*=L_g/n }[/math]
- [math]\displaystyle{ K^*=K \cdot L^*/L }[/math]
Basierend auf diesen Parametern wird nach [math]\displaystyle{ n }[/math]-fachem Durchlaufen der Rekursionsformel
[math]\displaystyle{ Q_{a,i}=Q_{a,i-1}+C_1 \cdot \left(Q_{z,i-1} - Q_{a,i-1} \right ) + C_2 \cdot \left(Q_{z,i}-Q_{z,i-1} \right) }[/math]
mit:
[math]\displaystyle{ Q_z }[/math]: | Zufluss zum Berechnungsabschnitt |
[math]\displaystyle{ Q_a }[/math]: | Abfluss aus Berechnungsabschnitt |
[math]\displaystyle{ i }[/math]: | aktueller Berechnungszeitschritt |
[math]\displaystyle{ i-1 }[/math]: | vorheriger Berechnungszeitschritt |
[math]\displaystyle{ dt }[/math]: | Berechnungszeitintervall |
[math]\displaystyle{ C_1=1- e^{-dt/K^*} }[/math] | |
[math]\displaystyle{ C_2=1- \frac{K^*}{dt}/C_1 }[/math] |
der Abfluss am unteren Sammlerende berechnet. Dieses von Kalinin-Miljukov abgeleitete Näherungsverfahren ist nichts anderes als die bei der Abflusskonzentration verwendete Speicherkaskade; d.h. der Wellenablauf in einer Transportstrecke lässt sich durch eine Speicherkaskade bestehend aus [math]\displaystyle{ n }[/math] Speichern mit der Speicherkonstante [math]\displaystyle{ K^* }[/math] simulieren.
Offenes Gerinne mit Angabe eines Querprofiles
Auch hier wird mit Hilfe der Wellenablaufberechnung nach Kalinin-Miljukov das Translations- und Retentionsverhalten abgebildet. Aus der Normalabflussbeziehung nach Manning-Strickler wird die charakteristische Länge als Parameter des Kalinin-Miljukov-Verfahrens abgeleitet /Rosemann, 1970/.
Mit der charakteristischen Länge erfolgt für das Gerinne eine Aufteilung in einzelne Segmente. Für jedes Segment wird mit Hilfe der Normalabflussbeziehung über eine nichtlineare Speicherberechnung die Berechnung des Übertragungsverhaltens vollzogen.
Kennlinie (Wasserspiegel – Querschnittsfläche – Abfluss)
Ist das Übertragungsverhalten der Transportstrecke durch vorangegangene Wasserspiegellagenberechnung bekannt, kann das Ergebnis in Form einer Wasserspiegel-Querschnitt-Abfluss Kennlinie benutzt werden.